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Abstract

Due to the large numbers of transcription factors (TFs) and cell types, query-
ing binding profiles of all valid TF/cell type pairs is not experimentally fea-
sible. To address this issue, we developed a convolutional-recurrent neural
network model, called FactorNet, to computationally impute the missing
binding data. FactorNet trains on binding data from reference cell types to
make predictions on testing cell types by leveraging a variety of features, in-
cluding genomic sequences, genome annotations, gene expression, and signal
data, such as DNase I cleavage. FactorNet implements several novel strate-
gies to significantly reduce overhead. By visualizing the neural network mod-
els, we can interpret how the model predicts binding and gain insights into
regulatory grammar. We also investigate the variables that affect cross-cell
type accuracy, and offer suggestions to improve upon this field. Our method
ranked among the top teams in the ENCODE-DREAM in vivo Transcrip-
tion Factor Binding Site Prediction Challenge, achieving first place on six of
the 13 final round evaluation TF/cell type pairs, the most of any compet-
ing team. The FactorNet source code is publicly available, allowing users to
reproduce our methodology from the ENCODE-DREAM Challenge.
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1. Introduction1

High-throughput sequencing has led to a diverse set of methods to inter-2

rogate the epigenomic landscape for the purpose of discovering tissue and cell3

type-specific putative functional elements. Such information provides valu-4

able insights for a number of biological fields, including synthetic biology and5

translational medicine. Among these methods are ChIP-seq, which applies6

a large-scale chromatin immunoprecipitation assay that maps in vivo tran-7

scription factor (TF) binding sites or histone modifications genome-wide [1],8

and DNase-seq, which identifies genome-wide locations of open chromatin,9

or “hotspots”, by sequencing genomic regions sensitive to DNase I cleav-10

age [2, 3]. At deep sequencing depth, DNase-seq can identify TF binding11

sites, which manifest as dips, or “footprints”, in the digital DNase I cleavage12

signal [4, 5, 6]. Other studies have shown that cell type-specific functional el-13

ements can display unique patterns of motif densities and epigenomic signals14

[7]. Computational methods can integrate these diverse datasets to eluci-15

date the complex and non-linear combinations of epigenomic markers and16

raw sequence contexts that underlie functional elements such as enhancers,17

promoters, and insulators. Some algorithms accomplish this by dividing the18

entire genome systematically into segments, and then assigning the result-19

ing genome segments into “chromatin states” by applying machine learning20

methods such as Hidden Markov Models, Dynamic Bayesian Networks, or21

Self-Organizing Maps [8, 9, 10].22

The Encyclopedia of DNA Elements (ENCODE) [11] and NIH Roadmap23

Epigenomics [12] projects have generated a large number of ChIP-seq and24

DNase-seq datasets for dozens of different cell and tissue types. Owing to25

several constraints, including cost, time or sample material availability, these26

projects are far from completely mapping every mark and sample combi-27

nation. This disparity is especially large for TF binding profiles because28

ENCODE has profiled over 600 human biosamples and over 200 TFs, trans-29

lating to over 120,000 possible pairs of biosamples and TFs, but as of the30

writing of this article only about 8,000 TF binding profiles are available.31

Due to the strong correlations between epigenomic markers, computational32

methods have been proposed to impute the missing datasets. One such im-33

putation method is ChromImpute [13], which applies ensembles of regression34

trees to impute missing chromatin marks. With the exception of CTCF,35
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ChromImpute does not impute TF binding. Moreover, ChromImpute does36

not take sequence context into account, which can be useful for predicting37

the binding sites of TFs like CTCF that are known to have a strong binding38

motif.39

Computational methods designed to predict TF binding include PIQ [14],40

Centipede [15], and msCentipede [16]. These methods require a collection of41

motifs and DNase-seq data to predict TF binding sites in a single tissue or42

cell type. While such an approach can be convenient because the DNase-seq43

signal for the cell type considered is the only mandatory experimental data,44

it has several drawbacks. These models are trained in an unsupervised fash-45

ion using algorithms such as expectation maximization (EM). The manual46

assignment of a motif for each TF is a strong assumption that completely ig-47

nores any additional sequence contexts such as co-binding, indirect binding,48

and non-canonical motifs. This can be especially problematic for TFs like49

REST, which is known to have eight non-canonical binding motifs [17].50

More recently, deep neural network (DNN) methods have gained signifi-51

cant traction in the bioinformatics community. DNNs are useful for biological52

applications because they can efficiently identify complex non-linear patterns53

from large amounts of feature-rich data. They have been successfully applied54

to predicting splicing patterns [18], predicting variant deleteriousness [19],55

and gene expression inference [20]. The convolutional neural network (CNN),56

a variant of the DNN, has been useful for genomics because it can process57

raw DNA sequences and the kernels are analogues to position weight matri-58

ces (PWMs), which are popular models for describing the sequence-specific59

binding pattern of TFs. Examples of genomic application of CNNs include60

DanQ[21], DeepSEA [22], Basset [23], DeepBind [24], and DeeperBind [25].61

These methods accept raw DNA sequence inputs and are trained in a super-62

vised fashion to discriminate between the presence and absence of epigenetic63

markers, including TF binding, open chromatin, and histone modifications.64

Consequently, these algorithms are not suited to the task of predicting cell65

type-specific epigenomic markers. Instead, they are typically designed for66

other tasks such as motif discovery or functional variant annotation. Both67

DanQ and DeeperBind, unlike the other three CNN methods, also use a re-68

current neural network (RNN), another type of DNN, to form a CNN-RNN69

hybrid architecture that can outperform pure convolutional models. RNNs70

have been useful in other machine learning applications involving sequential71

data, including phoneme classification [26], speech recognition [27], machine72

translation [28], and human action recognition [29]. More recently, CNNs73

3



and RNNs have been used for predicting single-cell DNA methylation states74

[30].75

To predict cell type-specific TF binding, we developed FactorNet, which76

combines elements of the aforementioned algorithms. FactorNet trains a77

DNN on data from one or more reference cell types for which the TF or TFs78

of interest have been profiled, and this model can then predict binding in79

other cell types. The FactorNet model builds upon the DanQ CNN-RNN hy-80

brid architecture by incorporating additional real-valued coordinated-based81

signals such as DNase-seq signals as features. Our software pipeline and in-82

cludes several novel utilities and heuristics to accelerate training and reduce83

overhead. For example, using a combination of the keras builtin utilities84

and Python wrapper libraries, we developed convenient data generators that85

can efficiently stream training data directly from standard genomic data for-86

mats; thus models can be trained on large datasets without changing memory87

requirements or producing large intermediate files. In contrast, genomic ma-88

chine learning methods, such as BoostMe [31] and random forest based model89

for methylation prediction [32], may limit training to a smaller subset due90

to memory constraints. Other genomic machine learning methods, such as91

DeepCpG [30] and DeepSEA [22], inefficiently extract millions of training se-92

quences into the hard drive as HDF5 files before training. We also extended93

the DanQ network into a ”Siamese” architecture that accounts for reverse94

complements (Figure 1). This Siamese architecture applies identical net-95

works of shared weights to both strands to ensure that both the forward and96

reverse complement sequences return the same outputs, essentially halving97

the total amount of training data, ultimately improving training efficiency98

and predictive accuracy. Siamese networks are popular among tasks that99

involve finding similarity or a relationship between two comparable objects,100

such as signature verification [33] and assessing sentence similarity [34].101

We submitted the FactorNet model to the ENCODE-DREAM in vivo102

Transcription Factor Binding Site Prediction Challenge [35], where it ranked103

among the top teams. The Challenge delivers a crowdsourcing approach104

to figure out the optimal strategies for solving the problem of TF binding105

prediction. Although all results discussed in this paper are derived from data106

in the Challenge, FactorNet is compatible with standard genomic data file107

formats and is therefore readily usable for data outside of the Challenge.108
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2. Materials and methods109

2.1. ENCODE-DREAM Challenge dataset110

The ENCODE-DREAM Challenge dataset is comprised of DNase-seq,111

ChIP-seq, and RNA-seq data from the ENCODE project or The Roadmap112

Epigenomics Project covering 14 cell types and 32 TFs. All annotations113

and preprocessing are based on hg19/GRCh37 release version of the human114

genome and GENCODE release 19 [36]. Data are restricted to chromosomes115

X and 1-22. Chromosomes 1, 8 and 21 are set aside exclusively for evaluation116

purposes and binding data were completely absent for these three chromo-117

somes during the Challenge. TF binding labels are provided at a 200 bp118

resolution. Specifically, the genome is segmented into 200 bp bins sliding119

every 50 bp. Each bin is labeled as bound (B), unbound (U) or ambigu-120

ously bound (A) depending on the majority label of all nucleotides in the121

bin. Ambiguous bins overlap peaks that fail to pass the IDR threshold of122

5% and are excluded from evaluation. A more complete description of the123

dataset, including preprocessing details such as peak calling, can be found in124

the ENCODE-DREAM Challenge website [35].125

2.2. Evaluation126

The TF binding prediction problem is evaluated as a two-class binary127

classification task. For each test TF/cell type pair, the following performance128

measures are computed:129

1. auROC. The area under the receiver operating characteristic curve is130

a common metric for evaluating classification models. It is equal to131

the probability that a classifier will rank a randomly chosen positive132

instance higher than a randomly chosen negative one.133

2. auPR. The area under the precision-recall curve is more appropriate134

in the scenario of few relevant items, as is the case with TF binding135

prediction [21]. Unlike the auROC metric, the auPR metric does not136

take into account the number of true negatives called.137

3. Recall at fixed FDR. The recall at a fixed false discovery rate (FDR)138

represents a point on the precision-recall curve. Like the auPR metric,139

this metric is appropriate in the scenario of few relevant items. This140

metric is often used in applications such as fraud detection in which the141

goal may be to maximize the recall of true fraudsters while tolerating142

a given fraction of customers to falsely identify as fraudsters. The143
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ENCODE-DREAM Challenge computes this metric for several FDR144

values.145

As illustrated in Figure 1, the FactorNet Siamese architecture operates146

on both the forward and reverse complement sequences to ensure that both147

strands return the same outputs during both training and prediction. Al-148

though a TF might only physically bind to one strand, this information149

cannot usually be inferred directly from the peak data. Thus, the same set150

of labels are assigned to both strands in the evaluation step.151

2.3. Features and data preprocessing152

FactorNet works directly with standard genomic file formats and requires153

relatively little preprocessing. FASTA files provides genomic sequences, BED154

files provide the locations of reference TF binding sites for labels, and bigWig155

files [37] provide dense, continuous signal data at single-nucleotide resolution.156

bigWig values are included as extra rows that are appended to the four-row157

one hot input DNA binary matrix. Training data are streamed using data158

generators to reduce memory overhead without impacting the running time.159

We developed the data generators using a combination of keras [38], pyfasta160

[39], pybedtools [40], and pyBigWig [41]. FactorNet can accept an arbitrary161

number of bigWig files as input features, and we found the following signals162

to be highly informative for prediction:163

1. DNase I cleavage. For each cell type, reads from all DNase-seq repli-164

cates were trimmed down to first nucleotide on the 5’ end, pooled and165

normalized to 1x coverage using deepTools [42].166

2. 35 bp mapability uniqueness. This track quantifies the uniqueness167

of a 35 bp subsequence on the positive strand starting at a particular168

base, which is important for distinguishing where in the genome DNase169

I cuts can be detected. Scores are between 0 and 1, with 1 representing170

a completely unique sequence and 0 representing a sequence that occurs171

more than 4 times in the genome. Otherwise, scores between 0 and 1172

indicate the inverse of the number of occurrences of that subsequence173

in the genome. It is available from the UCSC genome browser under174

the table wgEncodeDukeMapabilityUniqueness35bp.175

In addition to sequential features, FactorNet also accepts non-sequential176

metadata features. At the cell type level, we applied principal component177

analysis to the inverse hyperbolic sine transformed gene expression levels178
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and extracted the top 8 principal components. Gene expression levels are179

measured as the average of the fragments per kilobase per million for each180

gene transcript. At the bin level, we included Boolean features that indicate181

whether gene annotations (coding sequence, intron, 5’ untranslated region, 3’182

untranslated region, and promoter) and CpG islands [43] overlap a given bin.183

We define a promoter to be the region up to 300 bps upstream and 100 bps184

downstream from any transcription start site. To incorporate these metadata185

features as inputs to the model, we append the values to the dense layer of the186

neural network and insert another dense layer containing the same number of187

ReLU neurons between the new merged layer and the sigmoid layer (Figure188

1).189

2.4. Training190

Our implementation is written in Python, utilizing the Keras 1.2.2 library191

[38] with the Theano 0.9.0 [44, 45] backend. We used a Linux machine with192

32GB of memory and an NVIDIA Titan X Pascal GPU for training.193

FactorNet supports single- and multi-task training. Both types of neural194

network models are trained using the Adam algorithm [46] with a minibatch195

size of 100 to minimize the mean multi-task binary cross entropy loss function196

on the training set. We also include dropout [47] to reduce overfitting. One197

or more chromosomes are set aside as a validation set. Validation loss is198

evaluated at the end of each training epoch and the best model weights199

according to the validation loss are saved. Training sequences of constant200

length centered on each bin are efficiently streamed from the hard drive in201

parallel to the model training. Random spatial translations are applied in202

the streaming step as a form of data augmentation. Each epoch, an equal203

number of positive and negative bins are randomly sampled and streamed204

for training, but this ratio is an adjustable hyperparameter (see Table S1205

for a detailed explanation of all hyperparameters). In the case of multi-task206

training, a bin is considered positive if it is confidently bound to at least207

one TF. Bins that overlap a blacklisted region [11] are automatically labeled208

negative and excluded from training.209

2.4.1. Single-task training210

Single-task training leverages data from multiple cell types by treating211

bins from all cell types as individually and identically distributed (i.i.d.)212

records. To make single-task training run efficiently, one bin is allotted per213

positive peak and these positive bins are included at most once per epoch for214
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training. Ambiguously bound bins are excluded from training. Single-task215

model training can typically complete in under two hours.216

2.4.2. Multi-task training217

FactorNet can only perform multi-task training when training on data218

from a single cell type due to the variation of available binding data for the219

cell types. For example, the ENCODE-DREAM Challenge provides refer-220

ence binding data for 15 TFs for GM12878 and 16 TFs for HeLa-S3, but221

only 8 TFs are shared between the two cell types. Compared to single-task222

training, multi-task training takes considerably longer to complete due to223

the larger number of positive bins. At the start of training, positive bins are224

identified by first segmenting the genome into 200 bins sliding every 50 bp225

and discarding all bins that fail to overlap at least one confidently bound TF226

site. Model-task model training can typically complete in two days.227

2.5. Ensembling by model averaging228

Ensembling is a common strategy for improving classification perfor-229

mance. At the time of the Challenge, we implemented a simple ensembling230

strategy commonly called “bagging submissions”, which involves averaging231

predictions from two or more models. Instead of averaging prediction prob-232

abilities directly, we first convert the scores to ranks, and then average these233

ranks. Rank averaging is more appropriate than direct averaging if predic-234

tors are not evenly calibrated between 0 and 1, which is often the case with235

the FactorNet models.236

3. Results and Discussion237

3.1. Performance varies across transcription factors238

Table 1 shows a partial summary of FactorNet cross-cell type perfor-239

mances on a variety of cell type and TF combinations as of the conclusion of240

the ENCODE-DREAM Challenge. Final rankings in the Challenge are based241

on performances over 13 TF/cell type pairs. A score combining several pri-242

mary performance measures is computed for each pair. In addition to the 13243

TF/cell type pairs for final rankings, there are 28 TF/cell type “leaderboard”244

pairs. Competitors can compare performances and receive live updating of245

their scores for the leaderboard TF/cell type pairs. Scores for the 13 final246

ranking TF/cell type pairs were not available until the conclusion of the247
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challenge. Our model achieved first place on six of the 13 TF/cell type final248

ranking pairs, the most of any team.249

FactorNet typically achieves auROC scores above 97% for most of the250

TF/cell type pairs, reaching as low as 92.8% for CREB1/MCF-7. auPR251

scores, in contrast, display a wider range of values, reaching as low as 21.7%252

for FOXA1/liver and 87.8% for CTCF/iPSC. For some TFs, such as CTCF253

and ZNF143, the predictions are already accurate enough to be considered254

useful. Much of the variation in auPR scores can be attributed to noise in the255

ChIP-seq signal used to generate the evaluation labels, which we demonstrate256

by building classifiers based on taking the mean in a 200 bp window of the257

ChIP-seq fold change signal with respect to input control. Peak calls are258

derived from the SPP algorithm [48], which uses the fold-change signal and259

peak shape to score and rank peaks. An additional processing step scores260

peaks according to an irreproducible discovery rate (IDR), which is a measure261

of consistency between replicate experiments. Bins are labeled positive if they262

overlap a peak that meets the IDR threshold of 5%. The IDR scores are not263

always monotonically associated with the fold-changes. Nevertheless, we264

expect that performance scores from the fold-change signal classifiers should265

serve as overly optimistic upper bounds for benchmarking. Commensurate266

with these expectations, the auPR scores of the FactorNet models are less267

than, but positively correlative with, the respective auPR scores of the ChIP-268

seq fold-change signal classifiers (Figure 2A). This pattern does not extend to269

the auROC scores, and in more than half of the cases the FactorNet auROC270

scores are greater (Figure 2B). These results are consistent with previous271

studies that showed the auROC can be unreliable and overly optimistic in272

an imbalanced class setting [49], which is a common occurrence in genomic273

applications [21], motivating the use of alternative measures like the auPR274

that ignore the overly abundant true negatives.275

We can also visualize the FactorNet predictions as genomic signals that276

can be viewed alongside the ChIP-seq signals and peak calls (Figure 2C).277

Higher FactorNet prediction values tend to coalesce around called peaks,278

forming peak-like shapes in the prediction signal that resemble the signal279

peaks in the original ChIP-seq signal. The visualized signals also demon-280

strate the differences in signal noise across the ChIP-seq datasets. The281

NANOG/iPSC ChIP-seq dataset, for example, displays a large amount of282

signal outside of peak regions, unlike the HNF4A/liver ChIP-seq dataset283

which has most of its signal focused in peak regions.284

The ENCODE-DREAM challenge data, documentation, and results can285
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be found on the Challenge homepage: https://www.synapse.org/ENCODE.286

We also provide comparisons to other top ENCODE-DREAM competitors287

and existing published methods in the Supplementary Files.288

3.2. Interpreting neural network models289

Using the same heuristic from DeepBind [24] and DanQ [21], we visu-290

alized several kernels from a HepG2 multi-task model as sequence logos by291

aggregating subsequences that activate the kernels (Figure 3A). The kernels292

significantly match motifs associated with the target TFs. Furthermore, the293

aggregated DNase I signals also inform us of the unique “footprint” signa-294

tures the models use to identify true binding sites at single-nucleotide reso-295

lution. After visualizing and aligning all the kernels, we confirmed that the296

model learned a variety of motifs (Figure 3B). A minority of kernels display297

very little sequence specificity while recognizing regions of high chromatin298

accessibility (Figure 3C).299

Saliency maps are another common technique of visualizing neural net-300

work models [55]. To generate a saliency map, we compute the gradient of301

the output category with respect to the input sequence. By visualizing the302

saliency maps of a genomic sequence, we can identify the parts of the se-303

quence the neural network finds most relevant for predicting binding, which304

we interpret as sites of TF binding at single-nucleotide resolution. Using a305

liver HNF4A peak sequence and HNF4A predictor model as an example, the306

saliency map highlights a subsequence overlapping the summit that strongly307

matches the known canonical HNF4A motif, as well as two putative bind-308

ing sites upstream of the summit on the reverse complement (Figure 3D).309

More examples of FactorNet saliency maps can be found in the kipoi github310

repository [56].311

3.3. Example: applying FactorNet to predict E2F1 binding312

Many variables can affect the accuracy of cross-cell prediction accuracy.313

In addition to the type of model used, other competitors have noted the314

importance of preprocessing and training strategies to counteract the effects315

of batch effects and overfitting. For example, DNase-seq data widely varies316

in terms of sequencing depth and signal-to-noise ratio (SNR) across the cell317

types, which we measure as the fraction of reads that fall into conservative318

peaks (FRiP) (Figure S1A). Notably, liver displays the lowest SNR with a319

FRiP score of 0.05, which is consistent with its status as a primary tissue; all320
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other cell types are cultured cell lines. Some ENCODE-DREAM competi-321

tors proposed normalization steps to correct for the differences in DNase-seq322

data across cell types. Batch effects, which occur because measurements are323

affected by laboratory conditions, reagent lots, and personnel differences, can324

also negatively impact accuracy. Due to batch effects and biological differ-325

ences between cell types, a model trained on a reference cell type may overfit326

on any technical or biological biases present in that sample and thus fail to327

generalize to a new cell type. In the cases where a TF has multiple reference328

cell types to train on, some competitors propose training exclusively on one329

cell type (ideally the cell type that is most ”compatible” with the testing330

cell type), whereas another competitor used a cross cell-type cross-validation331

early stopping training strategy to improve cross-cell type generalizability.332

To demonstrate the flexibility and utility of FactorNet, we incorporate simi-333

lar strategies into the FactorNet model to yield improved binding prediction334

for the TF E2F1.335

For the ENCODE-DREAM Challenge, the TF E2F1 has two reference336

cell types for training, GM12878 and HeLa-S3, and one cell type for final337

round blind evaluation, K562. Reference binding data for other TFs are338

available for both GM12878 and HeLa-S3, including GABPA, ZNF143, and339

TAF1. To quantify the errors induced by batch effects present in the different340

datasets, FactorNet can train on one cell type and validate against another341

cell type (Figure S1B). We surmise that some of the batch effects that cause342

discrepancies between a training cell type and a validation cell type include343

differences in DNase-seq quality, ChIP-seq sequencing (e.g. single-end 36 bp344

vs. paired-end 100 bp), or antibodies. For E2F1, the GM12878 and HeLa-345

S3 E2F1 ChIP-seq datasets were generated using two different antibodies:346

ENCAB037OHX and ENCAB000AFU, respectively. The K562 E2F1 ChIP-347

seq dataset was generated using the antibodies ENCAB037OHX and EN-348

CAB851KCY, the former of which was also used for GM12878. As expected,349

a model trained exclusively on GM12878 data is more accurate than a model350

trained exclusively on HeLa-S3 data (Figure S1C-D). Given that ChIP-seq351

signal noise can significantly influence the accuracy of predictions (Figure 2),352

we propose that future data generation efforts should use protocol improve-353

ments such as ChIP-exo[57], CUT&RUN[58], or higher quality antibodies to354

complement the development of prediction models. Protocols across experi-355

ments should also be as uniform as possible.356

We also compare single-task and multi-task models for E2F1 binding.357

Several deep learning methods, including DeepSEA [22] and Basset [23], pri-358
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marily use multi-task training, which involves assigning multiple labels, cor-359

responding to different chromatin markers, to the same DNA sequence. The360

authors of these methods propose that the multi-task training improves ef-361

ficiency and performance. FactorNet supports both types of training. To362

the best of our knowledge, neither single-task nor multi-task training con-363

fers any particular advantage in terms of accuracy. For the K562/E2F1364

cross-cell prediction, the GM12878 single-task model outperformed GM12878365

multi-task model (Figure S1C). In contrast, for the NANOG/iPSC cross-cell366

type prediction, the H1-hESC multi-task model outperformed the H1-hESC367

single-task model (Figure S2). Nevertheless, ensembling single- and multi-368

task models together is an effective method of improving performance. In369

both the NANOG and E2F1 examples, the cross-cell type performance of370

the single-task and multi-task ensemble models significantly outclasses the371

performances reported at the conclusion of the Challenge, demonstrating the372

potential for FactorNet to readily adapt improved training heuristics.373

4. Conclusion374

FactorNet is a flexible framework that lends itself to a variety of future375

research avenues. FactorNet’s open source code, documentation, and ad-376

herence to standardized file formats ensures its utility in the bioinformatics377

community. For example, FactorNet can readily accept other genomic signals378

that were not included as part of the Challenge but are likely relevant to TF379

binding prediction, such as conservation and methylation. Along these same380

lines, if we were to refine our preprocessing strategies for the DNase-seq data,381

we can easily incorporate these improved features into our model as long as382

the data are available as bigWig files [37]. Other sources of open chromatin383

information, such as ATAC-seq [59] and FAIRE-seq [60], can also be used to384

replace or complement the existing DNase-seq data. Consequently, FactorNet385

is not limited to any single preprocessing pipeline. In addition, FactorNet is386

not necessarily constrained to only TF binding predictions. If desired, users387

can provide the BED files of positive intervals to train models for predicting388

other markers, such as histone modifications. As more epigenomic datasets389

are constantly added to data repositories, FactorNet is already in a prime390

position to integrate both new and existing datasets.391

12



Software availability392

Source code is available at the github repository http://github.com/uci-393

cbcl/FactorNet. In addition to the source code, the github repository con-394

tains all models and data used for the ENCODE-DREAM Challenge. Fac-395

torNet is also available through the kipoi model zoo [56].396
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Figure 1: Simplified diagram of the FactorNet model. An input DNA sequence
(top) is first one hot encoded into a 4-row bit matrix. Real-valued single-nucleotide signal
values (e.g. DNase I cleavage) are concatenated as extra rows to this matrix. A rectifier
activation convolution layer transforms the input matrix into an output matrix with a row
for each convolution kernel and a column for each position in the input (minus the width
of the kernel). Each kernel is effectively a sequence motif. Max pooling downsamples the
output matrix along the spatial axis, preserving the number of channels. The subsequent
recurrent layer contains long short term memory (LSTM) units connected end-to-end in
both directions to capture spatial dependencies between motifs. Recurrent outputs are
densely connected to a layer of rectified linear units. The activations are likewise densely
connected to a sigmoid layer that nonlinear transformation to yield a vector of probability
predictions of the TF binding calls. An identical network, sharing the same weights,
is also applied to the reverse complement of the sequence (bottom). Finally, respective
predictions from the forward and reverse complement sequences are averaged together,
and these averaged predictions are compared via a loss function to the true target vector.
Although not pictured, we also include a sequence distributed dense layer between the
convolution and max pooling layer to capture higher order motifs.
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Table 1: Partial summary of FactorNet cross-cell type performances on the

ENCODE-DREAM Challenge data. Each final ranking TF/cell type pair is demar-
cated with a *. For each final ranking TF/cell type pair, we provide, in parentheses,
performance scores based on the evaluation pair’s original ChIP-seq fold change signal.

Recall at

Factor Cell type auROC auPR 50% FDR

CTCF* iPSC 0.9966 (0.9998) 0.8608 (0.9794) 0.9142 (0.9941)
CTCF GM12878 0.9968 0.8451 0.8777
CTCF* PC-3 0.9862 (0.9942) 0.7827 (0.8893) 0.7948 (0.9272)
ZNF143 K562 0.9884 0.6957 0.7303
MAX MCF-7 0.9956 0.6624 0.8290
MAX* liver 0.9882 (0.9732) 0.4222 (0.6045) 0.3706 (0.6253)
EGR1 K562 0.9937 0.6522 0.7312
EGR1* liver 0.9856 (0.9741) 0.3172 (0.5306) 0.2164 (0.5257)
HNF4A* liver 0.9785 (0.9956) 0.6188 (0.8781) 0.6467 (0.9291)
MAFK K562 0.9946 0.6176 0.6710
MAFK MCF-7 0.9906 0.5241 0.5391
GABPA K562 0.9957 0.6125 0.6299
GABPA* liver 0.9860 (0.9581) 0.4416 (0.5197) 0.3550 (0.5202)
YY1 K562 0.9945 0.6078 0.7393
TAF1 HepG2 0.9930 0.5956 0.6961
TAF1* liver 0.9892 (0.9657) 0.4283 (0.4795) 0.4039 (0.4766)
E2F6 K562 0.9885 0.5619 0.6455
REST K562 0.9958 0.5239 0.5748
REST* liver 0.9800 (0.9692) 0.4122 (0.5596) 0.4065 (0.5945)
FOXA1* liver 0.9862 (0.9813) 0.4922 (0.6546) 0.4889 (0.6728)
FOXA1 MCF-7 0.9638 0.4487 0.4613
JUND H1-hESC 0.9948 0.4098 0.3141
JUND* liver 0.9765 (0.9825) 0.2649 (0.6921) 0.1719 (0.7223)
TCF12 K562 0.9801 0.3901 0.3487
STAT3 GM12878 0.9975 0.3774 0.3074
NANOG* iPSC 0.9885 (0.9876) 0.3539 (0.6421) 0.3118 (0.6680)
CREB1 MCF-7 0.9281 0.3105 0.2990
E2F1* K562 0.9574 (0.9888) 0.2406 (0.6428) 0.0000 (0.6573)
FOXA2* liver 0.9773 (0.9932) 0.2172 (0.7920) 0.0231 (0.8278)
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5. Appendix599
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Table S1: Summary and description of the hyperparameters used for the single-

task models in Figure S1B.

Argument Value Description

-v validchroms chr3 chr5 chr7 chr10
chr12 chr14 chr16 chr18
chr20 chrX

Sequences on these chromo-
somes are set aside for vali-
dation.

-e epochs 200 (ZNF143, TAF1),
300 (E2F1, GABPA)

Max number of epochs to
train before training ends.

-ep patience 200 (ZNF143, TAF1),
300 (E2F1, GABPA)

Number of epochs with no
improvement in the valida-
tion loss.

-lr learningrate 0.00001 Learning rate for the Adam
optimizer. We decreased it
from the default value of
0.001 to smooth the learning
curves.

-n negatives 1 Number of negative bins to
sample per positive bin per
epoch.

-L seqlen 1000 Length, in bps, of input se-
quences to the model.

-w motifwidth 26 Width, in bps, of the convo-
lutional kernels.

-k kernels 32 Number of kernels/motifs in
the model.

-r recurrent 32 Number of recurrent units (in
one direction) in the model.

-d dense 128 Number of units in the dense
layer in the model.

-p dropout 0.5 Dropout rate between the
recurrent and dense layers.
Also the dropout rate be-
tween the dense and sigmoid
layers.

-m metaflag False Flag for including cell type-
specific metadata features
(usually gene expression).
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Table S2: Hyperparameters used for the multi-task models in Figures 3 and

S1-S2. Unspecified values should be assumed to be the same as those found in Table S1.

Parameter Value Notes

-v validchroms chr11
-e epochs 20 Fewer epochs needed for

multi-task training due to
the large number of training
bins.

-ep patience 20
-lr learningrate 0.001 Default value of 0.001 is suf-

ficient for most applications.
-n negatives 1
-g gencodeflag False Multi-task training does not

currently incorporate any
metadata features.

-mo motifflag False

Table S3: Hyperparameters used for the single-task models in Figures S1C-D

and S2. Unspecified values should be assumed to be the same as those found in Table
S1.
Parameter Value Notes

-v validchroms chr11
-e epochs 100 Need more epochs than

multi-task training due to
fewer positive bins.

-ep patience 20
-lr learningrate 0.001 Default value of 0.001 is suf-

ficient for most applications.
-n negatives Varies (but usually 1) In some cases, increasing this

value from 1 improves cross-
cell type auPR scores for
single-task models.
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Figure S1: Variation in cell type-specific datasets influence cross-cell type per-

formance. (A) IGV [61] browser screenshot displays pooled DNase I cleavage signal and
conservative DNase-seq peaks for eight cell types. The inset is a magnified view at the
MTPN promoter, a known NRF1 binding site. (B) Each plot displays learning curves
of single-task models trained on either GM12878 or HeLa-S3. We generated within- and
cross-cell type validation sets by extracting an equal number of positive and negative bins
from the validation chromosomes. The difference between the smallest within- and cross-
cell type validation losses are displayed in each plot. (C and D) Precision-recall curves
of single- and multi-task models evaluated on the E2F1/K562 testing set trained exclu-
sively on either GM12878 or HeLa-s3. Dotted lines indicate points of discontinuity. Model
weights were selected based on the within-cell type validation loss on chr11. We gener-
ated single-task scores by rank averaging scores from two single-task models initialized
differently. Final bagged models ensemble respective single- and multi-task models.

27



0.0 0.5 1.0
Recall

0.5

1.0

P
re
ci
si
o
n

Single-task -/+=1  (0.1511)

Single-task -/+=9  (0.2458)

Single-task -/+=19 (0.3067)

Multi-task         (0.3116)

Bagged -/+=1       (0.3665)

Bagged -/+=9       (0.3883)

Bagged -/+=19      (0.3977)

Figure S2: Comparison of single- and multi-task training. Cross-cell type precision-
recall curves of single-task and multi-task NANOG binding prediction models trained on
H1-hESC and evaluated on iPSC. Model weights were selected based on the within-cell
type validation loss on chr11. We generated single-task scores by bagging scores from two
single-task models initialized differently. The three single-task models differ in the ratio
of negative-to-positive bins per training epoch. The bagged models are the rank average
scores from the multi-task model and one of the three single-task models. auPR scores
are in parentheses. Both training and testing ChIP-seq datasets use the ENCAB000AIX
antibody.

28


